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Over the last decade, it has become increasingly apparent that the etiology of preterm birth is

multifactorial, involving both genetic and environmental factors. With the development of new
technologies capable of probing the genome, exciting possibilities now present themselves to gain
new insight into the mechanisms leading to preterm birth. This review aimed to develop research

guidelines for the conduct of genetic epidemiology studies of preterm birth with the expectation
that this will ultimately facilitate the comparison of data sets between study cohorts, both nation-
ally and internationally. Specifically the 4 areas addressed in this review included: (1) phenotypic

criteria, (2) study design, (3) considerations in the selection of control populations, and (4) can-
didate gene selection. This paper is the product of discussions initiated by the authors at the 3rd
International Workshop on Biomarkers and Preterm Birth (PREBIC) held at the University of

California, Los Angeles, Los Angeles, California, in March 2005.
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Preterm birth (PTB), birth at less than 37 completed

weeks of gestation, is the most significant clinical prob-

lem facing contemporary perinatology in the developed

world. It is the single most important cause of perinatal

mortality and morbidity in industrialized countries:

60% to 80% of deaths of infants without congenital

anomalies are related to preterm birth.1 Furthermore,

PTB is associated with cerebral palsy and other long-

term health sequelae including cognitive impairment,

blindness, deafness, respiratory illness, and complica-

tions of neonatal intensive care.2-4

Despite major advances in our understanding of both
term and preterm labor, over the past 2 decades, the rate
of PTB has been escalating steadily and alarmingly. In
the United States between 1981 and 2002, the rate of
PTB rose 29%, from 9.4% to 12.1%.5-7 This increase
has resulted in more than 470,000 babies being born pre-
term every year in the United States.5,6 Similar increases
in the incidence of PTB have been reported in Canada,8

Australia,9 and Denmark.10 The only developed coun-
tries to report a decrease in PTB over the same time pe-
riod are France, Finland, and most recently Sweden.11,12

Over the last decade, it has become increasingly
apparent that the cause of PTB and preterm premature
rupture of the membranes is multifactorial and involves
both genetic and environmental factors.13-18 Similar
observations have been made in other complex diseases
such as coronary heart disease,19,20 hypertension,21,22

depression,23,24 and other psychiatric conditions.24 Pre-
term delivery has been shown to be familial in a study
of the heritability of PTB which demonstrated that pro-
bands with PTB were more closely related to each other
than random members of the population.25 Further-
more, twin studies have suggested that heritability for
PTB ranges from 17% to 36%.26,27 Transgenerational
studies have also demonstrated an increased risk of
PTB for women who themselves were born preterm.28

The risk of PTB increases as the gestational age of the
mothers’ birth decreases with mothers born at less than
30 weeks having a 2.4-fold (95% confidence interval 1.4
to 4.2) increase in risk of PTB.28 Furthermore, the well-
described racial differences in the rate of PTB (even
when controlling for other contributing etiological fac-
tors29) suggests the contribution of genetic factors. The
single best predictor of PTB among multiparous preg-
nant women is a past history of preterm delivery:
women with 1 prior PTB have a recurrence risk of
PTB of 15% and those with 2 prior PTBs have a recur-
rence risks of 32%.30 The risk of PTB tends to remain
with the mother through multiple pregnancies, even
with increased levels of prenatal surveillance and pre-
ventive interventions. This finding and the coupled ob-
servations of a familial tendency for PTB29 and racial
differences in PTB rates suggest that there may be
genetic components to the risk of PTB.
With the disclosure of the sequence of the entire
human genome31,32 and the availability of high-through-
put methods making genotyping of large numbers of
samples faster and less expensive than ever, our ability
to acquire genetic data has increased exponentially.
These technological advances now offer exciting possi-
bilities to gain an entirely new insight into the mecha-
nisms leading to PTB and has prompted a host of
association studies investigating the relationship be-
tween specific polymorphic variants and various aspects
of the preterm birth phenotype (see review18). Many of
these studies have been limited by small study size, pub-
lication and reporting bias, improper study design, and
lack of common standards worldwide. In order for re-
searchers in PTB to participate in and benefit from inter-
national efforts such as the Network of Networks33

(which aims to offer methodological support, promote
sound study design, and promote standardized analyti-
cal practices for genetic epidemiological studies), guide-
lines for research are needed.

This paper aimed to develop research guidelines for
the conduct of genetic epidemiological studies of pre-
term birth. It is anticipated that this will ultimately
facilitate the comparison of data sets between study
cohorts both nationally and internationally. This paper
is the product of discussions by the authors at the 3rd
International Workshop on Biomarkers and Preterm
Birth (PREBIC), which was held at the University of
California, Los Angeles, Los Angeles, California, in
March 2005. Guidelines for the design, execution, and
interpretation of genetic association studies designed to
identify genetic determinants of susceptibility to com-
plex diseases have been detailed elsewhere and provide
an excellent reference point.34,35 Specifically, issues such
as population stratification, data-driven subgroup anal-
ysis, possible absence of linkage disequilibrium between
marker and disease locus, and testing of multiple hy-
potheses have been reviewed by Keavney34 and issues
related to the application of genetic association studies
to the field of reproductive biology have been reviewed
by Romero et al.35

In this paper we will consider genetic association
studies specifically in the context of PTB. The 4 areas to
be addressed include: (1) phenotypic criteria, (2) study
design, (3) considerations in the selection of a control
population, and (4) candidate gene selection.

Phenotypic criteria

The first essential requirement to conduct genetic asso-
ciation studies to decipher a complex disease such as
preterm birth is the development of a standardized
definition of outcomes: the phenotype. Preterm birth,
as defined by the World Health Organization, is birth
before 37 weeks’ gestational age or before 259 days.36
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In this definition, the lower limit is not specified. To gain
meaningful information from genetic association stud-
ies, we need to go beyond this classical definition
because of the etiological heterogeneity of PTB, empha-
sizing its multifactorial origins.37-40

After excluding multifetal pregnancy, malformations
and intrauterine fetal death, preterm birth results from 3
broad clinical conditions: (1) preterm labor leading to
PTB (idiopathic PTB), (2) preterm premature rupture
of membranes (PPROM), and (3) medically indicated
(iatrogenic) PTB. Preterm labor leading to PTB and
PPROM are often grouped together and called sponta-
neous preterm birth12 because in both cases the initia-
tion of labor is spontaneous. This is in contrast to
indicated preterm birth, in which the decision to induce
labor or perform a cesarean section at less than 37
weeks’ gestation is iatrogenic. Preterm labor leading to
PTB accounts for approximately 50% of all PTB (range
23.2% to 64.1%).37,41 It is more frequent in populations
without any established risk factors in which it repre-
sents up to 50% to 70% of all preterm deliveries accord-
ing to the populations studied.42,43

A number of risk factors have been reported for
preterm labor leading to PTB including: personal his-
tory of previous PTB, low body mass or poor weight
gain during pregnancy, obesity, strenuous physical
workload or ergonomic factors, uterine anomalies, psy-
chological stress, smoking, drug abuse, in vitro fertili-
zation, and extremes of maternal age (less than 18 years
or 40 years of age or greater).30,37,44-46 PPROM, which is
usually followed by preterm delivery within 2 to 7 days,
accounts for another 25% of all preterm births (range
7.1% to 51.2%).37 Infection is usually regarded as the
main cause of PPROM, and it occurs more commonly
among women of low socioeconomic status and among
black women.41 Medically indicated PTB (in the absence
of PPROM or preterm labor leading to PTB) occurs in
about 25% of all PTB with variations from 8.7% to
35.2% according to studied populations.37,47 Medical
indications relate to both compromise in fetal well-being
such as being small for gestational age or nonreassuring
fetal status and maternal complications such as severe
pre-eclampsia or antepartum hemorrhage.

The contribution of each of the clinical groupings
that result in preterm birth varies across gestation
(Table I); however, the proportion of spontaneous
PTB and medically indicated PTB is relatively consistent
between populations (especially in the series published
after 1986), even though the rate of PTB varies up to
3-fold between populations (Table II).

There is currently no consensus about whether to
aggregate or disaggregate PTB from these 3 clinical
conditions in studies of etiology of PTB. A key argu-
ment for grouping all PTB is that the conditions that
motivate medical intervention for early delivery (eg, pre-
eclampsia, small for gestational age) share mechanisms
such as inflammation and vascular compromise with the
pathways that lead to spontaneous PTB.48-50 If the etiol-
ogies are indeed shared, grouping together offers in-
creased statistical power in the study of determinants.48

The alternate argument is to split preterm births into
subsets that arise from the diverse clinical pathways that
can lead to PTB. Spontaneous PTB is clinically quite
distinct from severe pre-eclampsia or being small for
gestational age that needs to be managed by medically
indicated PTB. Although splitting all preterm births
(a heterogeneous group) into subsets will result in smal-
ler numbers of patients in each group, the increase in
homogeneity in the study groups may offer increased
sensitivity to detect differences in genetic epidemiology
studies of preterm birth. An alternative to subgroup
analyses are covariate-based analyses that can incorpo-
rate quantitative traits directly. This approach may be a
more appropriate framework for the complex situation
of PTB.

The PREBIC genetics working group believes that
although grouping all types of PTB might be appropri-
ate for evaluating demographic or clinical associations
with PTB, for genetic studies we would strongly advo-
cate, where possible, to subset PTB into preterm labor
leading to PTB (idiopathic PTB), PPROM, and medi-
cally indicated PTB. Few studies evaluating risk factors
for PTB have empirically evaluated the effect of group-
ing all PTB together versus analyses based on subsets
determined by clinical data. Savitz et al48 recently re-
ported a direct comparison of spontaneous PTB (idio-
pathic PTB and PPROM) and medically indicated
PTB for demographic and clinical predictors of PTB.
Although the influences of many risk factors were
shared across the 2 groupings, inconsistent or divergent
relationships were identified for a number of risk factors
between the groupings. This is not surprising, given the
complexity of the etiological pathways in PTB.

To date, although a number of studies have been
published evaluating associations between specific poly-
morphisms and spontaneous preterm birth,51,52 no ge-
netic epidemiology studies have empirically evaluated
the effect of grouping all PTB together versus subsetting
them into preterm labor leading to PTB (idiopathic
PTB), PPROM, and medically indicated PTB, most
likely because of small subgroup sizes precluding infor-
mative statistical analyses. A further argument for sepa-
rating PTB into clinically determined subgroups is that
these subgroups may be associated with varying antepar-
tum treatment protocols (eg, antibiotics, corticosteroids,
tocolytic therapy, or antihypertensive prior to delivery)
and different long-term neonatal outcomes. For exam-
ple, there are data suggesting an association between
spontaneous PTB and cerebral palsy,53,54 whereas med-
ically indicated PTB appears to be associated with
neonatal respiratory distress syndrome, retinopathy of
prematurity, and broncopulmonary dysplasia.54
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Table I Classification of preterm birth by gestational age

Subgroups Less than 28 wk, % 28-31 wk, % 32-33 wk, % 34-36 wk, % Less than 37 wk, %

Spontaneous preterm birth 49.5 35.6 42.6 60.6 55.2
Iatrogenic preterm birth 17.4 26.7 23.9 18.7 20.2
Intrauterine fetal death 2.3 9.0 4.6 1.4 2.7
Malformations 4.7 5.5 5.6 4.3 4.6
Multiple birth 16.0 14.7 16.0 10.1 11.6
Unknown onset of delivery 10.1 8.5 7.3 4.9 5.7
Total 100 100 100 100 100

Data from Swedish population birth statistics 1991 to 2001 in which there were 1.2 million births12 (reprinted with permission from Morken NH, Källen K,

Hagberg H, Jacobsson B. Preterm birth in Sweden 1973-2001: rate, subgroups and effect of changing patterns in multiple births, maternal age and smoking.

Acta Obstet Gynecol Scand 2005;84:558-65).

Table II Comparison of spontaneous preterm birth and medically indicated preterm birth between populations

Author Year
Preterm
birth rate, % Country Population

Medically
indicated
preterm
birth, %

Spontaneous
preterm
birth, %*

Arias and
Tomich128

1982 8.6 United States 35.2 64.8

Main et al129 1985 15.4 United States Black 24.1 75.8
Piekkala et al130 1986 6.6 Finland White, regional

population based
28.8 71.2

Meis et al131,y 1987 5.7 United States White 18.7 81.3
Meis et al132 1987 6.1 United States Black, private clinic 20.0 80.0
Meis et al132 1987 10.8 United States Black, public clinic 20.9 79.1
Morken et al12 1991-2001 5.6 Sweden Mainly white,

nation-based
setting

20.3 80.7

Zhang et al133 1992 16.7 United States Black 15.0 85.0
Zhang et al133 1992 8.0 United States White 17.4 82.6

* Spontaneous PTB is idiopathic PTB and PPROM leading to spontaneous PTB.
y Preterm birth defined as birth weight less than 2500 g.
The PREBIC genetics working group believes that it
is necessary to define the minimum phenotype informa-
tion that should be reported for genetic epidemiology
studies of PTB. To achieve this, we propose both a
minimum data set (Table III) and an optimal data set
(Table IV) for these studies. The descriptors in the min-
imal data set have been selected to encompass variables
that will allow specific subgroups of PTB to be identified
and include variables with strong associations with in-
creased risk of PTB. The more expansive optimal data
set contains a larger additional set of variables that
will allow further subgrouping of women with PTB
and again includes variables associated with increased
risk of PTB.

The idea of having a defined minimum standard for
information associated with experiments is not new to
life sciences. Similar minimum data sets have been
described in other areas of genomic research such
as the minimum information about a microarray ex-
periment (MIAME) guidelines for microarray studies
that have been developed by the Microarray Gene
Expression Data Society55 and the mode of operations
adopted by the macromolecular structure community
(for example, http://msd.ebi.ac.uk/), in which most jour-
nals require submission of a well-defined minimum of
raw data associated with publications.

Use of the minimum and/or optimal data sets de-
scribed in this paper for genetic epidemiology studies
into PTB will provide the opportunity for the following:
(1) precise interpretation of experimental results, (2)
potential independent verification in different popula-
tions, (3) comparison of results between multiple stud-
ies, and (4) combining data sets from different studies
without requiring further data abstraction from clinical
records.

Study design

A variety of observational epidemiological approaches
have evolved to permit the assessment of contribution
of genetic factors to disease risk. The advantages and

http://msd.ebi.ac.uk/
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disadvantages of each of these approaches are summa-
rized in the third of a very informative series of 7 articles
on genetic epidemiology.56

Cohort studies are considered the most robust of all
observational designs because many issues relating to
bias and confounding can be overcome by adopting this
study design. One firm advantage of adopting a cohort
study design is the facility to consider gestational age as
a continuous variable rather than introducing an arbi-
trary 37-week cut-off point; however, the incidence of
PTB entails large sample sizes in these studies, which in
turn inevitably entails large costs.

The most commonly adopted alternative is a case-
control design, in which affected and unaffected indi-
viduals are sampled. These tend to be simpler, easier to
administer, and more cost efficient, hence their popu-
larity. In practice a nested case-control study set within
a prospectively collected cohort might be the preferred
design to avoid selection bias (see section on selection of
a control population).

The design of studies to identify genetic risk factors
for PTB presents all of the usual problems for genetic
studies of complex disease that have been reviewed
extensively elsewhere and will not be discussed in detail
here (see recent review57); however, in addition to these

Table III Minimum data set for genetic epidemiology stud-
ies into preterm birth

Minimum data set
� Spontaneous initiation of preterm birth*
� Preterm labor leading to PTB (idiopathic PTB)
� PPROMy

� Medically indicated preterm birth (nonspontaneous
initiation)
� Living fetus versus intrauterine fetal death when commences

labor
� Singleton or multifetal pregnancy
� Gestational age at delivery (utilizing American College of

Obstetrics and Gynecology guidelines for dating64)
� Birth between 20 and 37 weeks of gestation

� Smoking status during pregnancyz

� Use of drugs (nonprescription) and/or alcohol during
pregnancyx

� Maternal variables
� Age
� History of previous preterm birth
� Parity

� Ethnicity

* Preterm birth is birth between 20 and 37 weeks gestational age.
y PPROM is spontaneous rupture of the membranes prior to the

onset of labor and before 37 weeks’ gestation.
z Any smoking during pregnancy; ideally the amount, duration, and

gestational period of exposure should be recorded; however, frequently

little sensitivity or specificity is gained beyond a yes/no response

because most women will underreport their smoking habits.
x Any use of nonprescription drugs or alcohol during pregnancy:

type of drug, frequency, and gestational period of exposure.
Table IV Optimal data set for genetic epidemiology studies
into preterm birth

Optimal data set*
� Demographic variables
� Type of prenatal care
� Socioeconomic status
� Maternal education

� Clinical variables
� Spontaneous labor versus induction

of labor
� Maternal variables
� Height/prepregnancy weight/body

mass index
� Maternal nutritional status
� Weight gain during pregnancy
� Uterine anomaly
� Psychological stress
� Use of medication during pregnancy

1. Tocolytic therapy (timing and duration)
i. Prior to clinical presentation

(eg, progesterone)
ii. At the time of clinical presentation

2. Antibiotics
� Previous cervical conization/loop electrosurgical excision

procedures
� Cervical cerclage
� Mode of conception

1. Natural
2. Assisted (ovulation induction, in vitro fertilization,

intracytoplasmic sperm injection, donor sperm, donor
egg, etc)

� Evidence of infection
1. Fever
2. Tachycardia
3. Placental histopathology
� Pre-existing medical conditions

1. Hypertension
2. Diabetes
3. Autoimmune conditions
� Complications of pregnancy

1. Pre-eclampsia/eclampsia
2. Abruption
3. Recurrent antepartum hemorrhage
4. Small for gestational age

� Fetal variables
� Birth weight
� Congenital anomaly
� Evidence of infection

1. Tachycardia
2. Amniotic fluid assessment
3. Early neonatal infection

� Placental histopathology
� Infection
� Uteroplacental ischemia

� Family history
� Maternal gestational age at delivery
� Mother, father, or sibling with history of PTB

1. Validated or self-report

* Not in order of importance.
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issues, PTB presents unique problems. Specifically, it is
possible that the maternal genotype predisposes to
PTB, the fetal genotype predisposes to PTB, or both in-
teract to do so. If one considers that genetic risks are not
causative in the same way that mutations cause Mende-
lian disease, but affect only risk or susceptibility, this
creates a set of analytical issues that make the design
of studies and the interpretation, if not the collection
of data, especially difficult. Study design needs to reflect
this added complexity.

To appropriately design genetic studies, we must first
consider who is the affected individual or case. In more
traditional disease studies this is straightforward: an
individual either has the disease or does not; however, in
PTB it is less clear cut who is affected. Is it the mother or
the fetus? In one sense it is neither but more precisely the
birth event. Using this as the conceptual framework
allows a variety of designs to be used, but are any of
them really optimal or do we need to take a more
pluralistic approach?

The potential for interaction among different genetic
factors in different individuals has not been assessed
extensively, although a few methods have been devel-
oped to study this possibility.58-62 These papers attempt
to use a variety of related statistical techniques to ad-
dress the effects of both maternal and fetal genotype.
The most commonly used example of this is the trans-
mission disequilibrium test to test for linkage disequilib-
rium between a marker and a putative disease locus
using case-parent trios. Such approaches have the ad-
vantage of overcoming population stratification by us-
ing within family controls and allow the possibility of
using expectation maximization algorithms to compen-
sate for a certain degree of missing data within each
trio.62 Other alternatives include the method of Wilcox
et al,61 which assess the effect of fetal genotype on
PTB using a log linear model testing for an overrepre-
sentation of inheritance of specific alleles in preterm
events. In the case of the mother’s role, the test assesses
the differences between the mother’s and father’s geno-
types. This approach allows for the assessment of mater-
nal contribution, the fetal contribution and both to the
pregnancy outcome.

An alternative approach to the case-only, family-
based design summarized earlier is to use a more
classical case-control approach. In this scenario both
preterm and term birth events are included in the
analysis, and allele and/or genotype frequency differ-
ences are assessed in PTB versus term births. This
approach is a standard genetic epidemiological ap-
proach and has the logical advantage that it is not
necessary to recruit fathers into the study, a process not
always possible; however, the question of whose geno-
type is critical is still an issue.

Several analytical approaches are possible to address
this issue. One is to assess an association between
maternal and fetal genotypes independently. This, how-
ever, ignores the aforementioned possibility of interac-
tion. An alternative to separate analyses is to use
statistical approaches such as logistic regression with
both genotypes as variables. Although this is a possible
approach, it does have some caveats; because the ma-
ternal and fetal genotypes are not independent of each
other, they are not truly uncorrelated variables and this
makes analyses more difficult. This issue will require
more attention by statistical geneticists in the near
future. At present most investigators have analyzed
maternal and fetal separately and drawn conclusions
about the contribution of each.14,16,63-71 In the long
term, this will not be adequate.

Furthermore, in addition to potential maternal-fetal
genotype interactions, there is the distinct possibility
that multiple genes act together to affect pregnancy
outcomes. This concept has begun to get increasing
attention in the genetic analysis of other complex
disease.72-75 Gene-gene interaction (or epistasis) can op-
erate in several ways.74 First, the effect of 1 gene may be
masked by the genotype at a second locus, making it dif-
ficult to infer a genotype-phenotype relationship without
knowledge about the second locus. Second, each geno-
type may have distinct phenotype, but the phenotype
will differ as a function of genetic background. Third,
effects at 2 loci may be present and detectable, but the
effect of the 2 loci may be additive or multiplicative.

It should be noted that these types of contextual
effects of genetic background can also occur with
environmental context such that the genetic effects are
distinct across environments (gene-environment interac-
tions). Failure to consider such context can cause
research results to be inconsistent across studies, a not
uncommon situation in the genetic study of complex
disease. The net effect of these types of interactions will
be to maintain homeostasis (eg, normal gestational
length) in the presence of perturbations by compensat-
ing at other genes for deficiencies in 1 gene.76 Only when
variants at more than 1 gene prevent such compensation
will a disease phenotype present.

Several approaches have been developed that can
handle gene-gene or gene-environment interaction, al-
though none of them is ideal in all situations.77 Most of
them are best suited to a case-control design as opposed
to family-based approaches; however, as with the other
designs to study of the genetics of PTB, it is unclear how
to include both maternal and fetal genetic information.
These approaches include the following: (1) logistic re-
gression and stepwise regression78; (2) set association79;
(3) classification and regression trees; (4) multivariate
adaptive regression spline80; (5) focused interaction test-
ing framework81; and (6) neural networks82 for samples
of unrelated individuals. Each of these approaches has
limitations that include assumptions with regard to
single-locus effects, assumptions with regard to either
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a statistical or genetic model, and the so-called curse of
dimensionality, the state of data being too sparse for the
number of loci being studied to estimate genetic effects:
yet each of these approaches is more powerful in certain
situations than the others. A discussion of many of these
methods is outside the scope of this paper but can be can
be found elsewhere.72

Another approach that has been used with increasing
frequency is multifactor dimensionality reduction
(MDR).83,84 This technique is effective at dealing with
large numbers of potential interactions between genes
and has already proven informative in studies of pre-
term birth.85 MDR has the advantage that it does not
assume a mode of inheritance for the disease and can
identify genetic risk models at multiple loci in the ab-
sence of single-locus effects. In fact, it is more powerful
than some of the methods mentioned earlier when no
single-locus effects exists, although it is less powerful
when single-locus effects exist.81 The method is also tol-
erant of moderate levels of genotyping errors and/or
missing data. MDR also incorporates a cross-validation
method, not usually used in more standard analyses.
Such model validation has proven to be informative
in the ability to generalize results and prevent type I
error.86 MDR can, however, be computationally costly,
especially testing large data sets for higher order (more
than 4 loci) interactions and results may be difficult to
interpret from a physiological point of view. It also
has low power in cases of genetic heterogeneity and phe-
nocopies, but these limitations are probably no different
from other methods. Additionally, it may not be suited
to assess the role of 2 genotypes that are not indepen-
dent but in which both affect phenotype.

As data analysis becomes more complex, simple
analytical methods may be impractical and analyses
may have to proceed in several steps that sequentially
simplify the data set being used. Some methods noted
use this paradigm as their central technique,79,87 whereas
others have implemented techniques such as MDR in a
hierarchical fashion based on subdividing the data by
physiological pathways.84 Finally, the complexity of
these analyses and the number of statistical tests being
performed often make interpretation of results difficult
or limited.

Multiple testing is an issue that has received much
attention in genetic epidemiology literature. A review by
Hirschhorn et al88 reported that of 166 putative associ-
ations that had been studied 3 or more times, less that
4% were reproduced more than 75% of the time. All
statistical tests should be reported, and account should
be taken when testing several loci in 1 study population
to minimize false positives from multiple hypothesis
testing. The most commonly used method for correcting
for multiple hypothesis testing is the Bonferroni correc-
tion. An alternative strategy that has been advocated to
address the inherent statistical multiple comparisons
problem is to adopt a 2-stage approach.89 Other more
elaborate statistical methods such as Bayesian methods
that can take into account the posterior probability of
the validity of an association are now being applied.
The application of such approaches will be an important
step forward in reducing false-positive results.

The PREBIC genetics working group recommend
that authors practice full disclosure in the presentation
of their analyses in terms of how many statistical tests
were performed to allow readers to judge the signifi-
cance of the results for themselves.90 The exception to
this would be when studies are predominantly meant
as exploratory or hypothesis generating. Furthermore,
power calculations should also be an integral part of a
study design to ensure that the study is sufficiently pow-
ered to address the stated hypotheses.

Finally, pooling genomic deoxyribonucleic acid
(DNA) samples is an attractive strategy in both case-
control and family-based studies because it allows rapid
and inexpensive genotyping. A variety of technologies
can be applied to detect single nucleotide polymor-
phisms (SNPs) using pooled DNA samples including
primer extension assays and microarrays; however,
certain prerequisites are essential for this approach to
be successful, in particular, the accurate measurement of
DNA concentration followed by the preparation of
replicate pools. This approach also depends greatly on
the robustness of the SNP assay because the generation
of false positives can drastically influence the detection
of associations. Validation of pooled results against
individual genotype results is an important step in
optimizing assays for pooled samples. Unless very large
numbers of samples are to be processed, the effort
required in optimization of genotype assays for pooled
samples can outweigh the potential benefits.

To summarize, there are 3 distinct designs that can be
used to assess the role of genetic risks in PTB: a family-
based trio design; a cohort design; and a case-control
design. The former has the advantage that several
analytical methods have been developed to deal with
triads of collected data. The others have the advantage
that the data are easier to collect but the disadvantage
that analytical tools are not completely developed to
assess maternal-fetal contributions simultaneously. The
PREBIC genetics working group believes that the opti-
mal study design for genetic epidemiology studies of
PTB would include at a minimum mothers and affected
offspring. If possible, it would be an asset to recruit
fathers and even unaffected siblings; however, the prac-
ticalities of undertaking this should not be underesti-
mated, and the costs possibly outweigh the benefits.
Several approaches are now available to infer genotype
and haplotype of missing members in incomplete case-
parent trios.91

Therefore, there is currently no perfect design, and
ongoing work is required to refine analytical methods to
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improve our ability to assess genetic risk factors of PTB.
Regardless of the design to be used, it is critical that
extreme care be taken in design and collection of current
data so that as new and better analytical methods are
developed, the data can be useful for reanalysis.

Considerations in the selection of
a control population

The acquisition of suitable control populations is a
critical component of any large-scale genetic association
study of the etiology of PTB.92 Appropriate control
selection, in which controls accurately represent the
base population from which the cases arise, can minimize
systematic differences, ensure accurate interpretation of
the data, and enhance the ability for findings to be repli-
cated. A cohort study design offers the intrinsic benefit
of being predicated on prospective collection of subjects
from a defined population with cases and controls arising
out of this single group. The same is not true of case-con-
trol genetic epidemiology studies: in these studies, when
poor control selection has occurred, disease-gene associa-
tions can be performed with controls that were selected
from different populations from the cases, which can re-
sult in misinterpretation of results.

To minimize systematic bias in collection of cases and
controls, acquisition of these groups from a common
geographic site or group of sites is critical.93 Obtaining
controls from the same sites as cases may facilitate
matching the groups for socioeconomic status and pre-
and perinatal care practices, both of which could affect
the etiology of the preterm births analyzed. In addition
to obtaining cases and controls from common sites, care
should also be taken to diminish temporal drift in gene
pools by concurrently collecting cases and controls.94

Moreover, collecting controls and cases from the same
geographic site(s) and time period assists in the capabil-
ity of investigating gene/polymorphism-environment in-
teractions. As with nongenetic studies, utilizing the same
sites should help control for mix of race and ethnicity
within a population which helps to reduce the possibility
of population stratification in allele frequencies; how-
ever, in many countries in the world, this approach
would not be sufficient to avoid population stratifica-
tion. Furthermore, instituting measures to avoid gene-
tic drift and population stratification cannot be
overemphasized.

One method by which to confirm that controls are
ethnically related to cases is to use multiple genetic
markers of ethnicity.95-98 Testing for Hardy-Weinberg
equilibrium should also be a standard of practice be-
cause it is sensitive to population stratification,99 al-
though deviations may also be indicative of genetic
association.100 Two additional methods have been pro-
posed that can help correct for failure to adequately
match cases and controls. One method, genomic con-
trol, proposes the collection of genetic information at
several loci that are unrelated to the phenotype to test
for underlying population structure and to correct for
it if it occurs.101 The second method, known as struc-
tured association, tests for underlying population struc-
ture explicitly, and then this information can be used to
divide samples by genetically identified groups prior to
analysis for association.102 Genetic markers of ethnicity
are not yet currently available for all ethnic groups;
therefore, genome control or structured association
analyses should be performed in populations in which
concerns of substructure arise.

The general concept for assuring valid case-control
comparisons is to match these groups for noninvolved
alleles and nongenetic contributions as closely as possi-
ble. Because the etiology of human preterm birth is
heterogeneous, research designed to specifically identify
genetic contributions to risk will need to consider the
many previously appreciated nongenetic contributors to
prematurity.35 To enrich for the genetic contribution of
preterm birth, cases and controls should be matched on
variables for nutritional status, adequacy of prenatal
care, socioeconomic status, maternal age, body mass
index/prepregnancy weight/weight gain, maternal ex-
posure history (including smoking, medications, drug
use, and environmental and social exposures), and previ-
ous medical and obstetric history. Other potential vari-
ables for matching or for use as inclusion criteria
include history of prior preterm birth or a specific gesta-
tional age range at delivery.

The PREBIC genetics working group believes that
control population should be drawn from uncompli-
cated deliveries and that caution should be exercised in
excluding too many neonatal phenotypes; however,
because small for gestational age may share common
aspects in the etiology with PTB, the inclusion of this
neonatal phenotype in the control group could disguise
an association. Careful description of inclusion criteria,
exclusion criteria, and attempts to correct for potential
biases should be incorporated in each report of findings.

The selection of cases and controls for preterm birth
provides some novel methods for assigning genetic risk
and defining case and control status. For example, cases
could specifically be multiparous mothers with recurrent
PTB versus controls of multiparous mothers with only
term birth. In this situation, because it remains unclear
whether the mother or fetus is the proband, multiparous
mothers with recurrent preterm birth could reflect either
1 affected individual (mother) or 2 affected siblings. In
these types of family-based studies, one can make
comparison of affected to nonaffected relatives or of
generational transmitted versus nontransmitted alleles.
Family-based studies in which siblings are used as
controls have the advantage that cases and controls
are derived from the same overall gene pool.92



Pennell et al 9

ARTICLE IN PRESS
Alternatively, to provide even greater evidence of a com-
mon genetic contribution among affected families, it will
be particularly helpful to identify families with first-de-
gree relatives having preterm birth in comparison with
pedigrees without preterm birth.

Candidate gene selection

There is a considerable body of literature attributing
polymorphisms (particularly SNPs) within genes as
primary contributors of an individual’s risk of disease.
SNPs may occur in noncoding regions of genes, in which
they may have an impact on the rate of transcription
and/or messenger ribonucleic acid stability, or in coding
regions, in which they have the potential to result in
alterations in the protein sequence. Studies of sets of
human genes have demonstrated that each gene contains
several SNPs, including coding region substitutions,
with a frequency of greater than 1% in the general
population. About half of the coding SNPs are silent,
whereas the other half are nonsynonymous SNPs,
resulting in amino acid substitutions.103,104 SNPs can al-
ter the functional output of the genome through various
mechanisms including altered protein structure, func-
tion, and interaction with other proteins. SNPs con-
ferring disease risk tend to occur in structurally and
functionally important protein domains and are most
likely to affect function by either decreasing cellular pro-
tein levels or altering the structure of these mole-
cules.105,106 How do we identify the most relevant
SNPs in candidate genes to study in the context of
PTB susceptibility? The most comprehensive analysis
of candidate SNPs is obtained by resequencing the entire
candidate gene in patients and controls to search for
disease-specific variants. This approach is expensive
and limited.

The study of allelic variants is a simpler, cheaper yet
powerful approach, hence its popularity. Nevertheless,
searching for disease causing SNPs is a challenging task
because of the complex nature of the PTB phenotype
and the enormous number of SNPs that could be
analyzed. The situation is further complicated by all
the genes involved in the complex pathophysiology of
PTB that have yet to be identified. Furthermore, a
candidate gene approach precludes the use of unknown
genes or genes with unknown function.

Two approaches have generally been adopted to
identify candidate susceptibility genes: the functional
approach and the positional approach. In the functional
approach, used in many earlier studies, the gene coding
for a protein with a known biochemical role is investi-
gated. This approach has been used most widely in PTB
studies of genetic susceptibility, despite the drawbacks
alluded to above. The positional approach uses linkage
analysis to identify regions of the genome that segregate
with the disease of interest. Although generally the more
successful of the 2 approaches, the positional approach

has been of less utility investigating PTB because

extended pedigrees of affected individuals are a prereq-

uisite for linkage analysis and few such collections of

PTB families exist.
Once candidate susceptibility genes have been se-

lected, specific SNPs within those genes need to be
identified. Bioinformatics-based strategies may be in-
strumental in segmenting molecular studies into a subset
of SNPs with a greater likelihood of conferring to
specific disease phenotypes. This approach is both
essential and beneficial to prioritize SNPs of genes in
biological pathways associated with complex diseases.
In contrast to highly penetrant mutations, common
SNPs are usually associated with less dramatic effects on
protein function, which, alone, may not be destructive to
the capacity of the biological process; however, inheri-
tance of combinations of functional, commonly occur-
ring SNPs may additively or synergistically lead to an
altered function, thus to a distinct phenotype.

There are a growing number of bioinformatics and
computational techniques available to identify func-
tional SNPs that are likely to affect the folding and
thus function of the encoded proteins. Bioinformatics
approaches include data mining from Web-based SNP
databases and other relevant sources. Automated tools
are available to mine and validate SNP information
from both public (eg, dbSNP,107 HGVBase,108 Gen-
eSNP, and SNP500) and private databases (Celera109

[https://myscience.appliedbiosystems.com]). The 2 larg-
est SNP databases, dbSNP (http://www.ncbi.nlm.nih.
gov/SNP/) and HGVBase (http://hgvbase.cgb.ki.se/),
are general databases containing more than 2 million
SNP entries, whereas GeneSNP (http://www.genome.
utah.edu/genesnps/, http://lpgws.nci.nih.gov/) andSNP500
(http://bumper.nci.nih.gov/home.cfm) are relatively
smaller, specialized databases. Uniqueness and specificity
of the identified nonsynonymous SNPs can be evaluated
using the BLAST against gene transcript tool (http://
lpgws.nci.nih.gov:82/perl/blast2) and BLAST against
human genome tool of NCBI,110 as explained in
Savas et al.111

Once nonsynonymous SNPs within candidate genes
have been identified, there are a suite of computational
applications to predict functionality of SNPs. A multi-
tude of Web-based tools are available to aid this
process. An example of the methodology and associated
Web-based tools is outlined below:

1. Protein alignment and evolutionary conservation
analysis. This strategy assesses evolutionary conser-
vation (also known as profiling modeling), which
exploits the relationship between sequence conser-
vation across species and criticality of function to
detect which amino acid substitutions are most likely

https://myscience.appliedbiosystems.com
http://www.ncbi.nlm.nih.gov/SNP/
http://www.ncbi.nlm.nih.gov/SNP/
http://hgvbase.cgb.ki.se/
http://www.genome.utah.edu/genesnps/
http://www.genome.utah.edu/genesnps/
http://lpgws.nci.nih.gov/
http://bumper.nci.nih.gov/home.cfm
http://lpgws.nci.nih.gov&percnt;3A82/perl/blast2
http://lpgws.nci.nih.gov&percnt;3A82/perl/blast2
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to be deleterious. The 2 most commonly used tools
include SIFT112,113 (sorting intolerant from tolerant
[http://blocks.fhcrc.org/wpauline/SIFT.html]) and
PolyPhen.114

2. Protein structure functional prediction methods.
These methods consider 3-dimensional structure
effects of amino acid substitution directly and iden-
tify the impact on structure stability rather than
protein function. The models include structure
stability modeling,115 FOLD-X116,117 (http://fold-x.
embl-heidelberg.de:1100/cgi-bin/main.cgi) and post-
translational modification (NetPhos program118

[http://www.cbs.dtu.dk/services/NetPhos/]).

Overall the sensitivity of this suite of prediction tools
to model SNP function is 70% to 90%. It has been
successfully used to systematically study the DNA repair
and cell cycle SNPs111,119 and genetic variants involved
in breast cancer.120-122

Although much of the earlier discussion relates to
functional variants in coding regions of genes (coding
SNPs), predisposing gene variants may not have an
obvious role in gene function but instead may occur in
nonexpressed sequences such as introns and flanking
regions (noncoding SNPs). For example, type 2 diabe-
tes–predisposing variants occur in the introns of calpain
10123,124 and far upstream of the hepatocyte nuclear fac-
tor-4a gene125 and commonvariation in a region of noob-
vious function predisposes to Hirschsprung’s disease.126

It is therefore important to capture as much of the com-
mon variation across a candidate gene as possible.

SNPs that capture a large proportion of the common
variation across a given gene can be determined from the
publicly available HapMap (http://www.hapmap.org/)
data. To ensure that HapMap SNPs do not give redun-
dant information because of linkage disequilibrium, gen-
otype information from publicly available genotyped
cohorts such as the 30 white trios used to generate the
HapMap data can be used as a reference. The algorithms
of tagger (http://www.broad.mit.edu/mpg/tagger/) can
then be applied to select an efficient, nonredundant set
of tagging SNPs that capture all HapMap SNPs across
the gene (G 10 kb either side) at r2 O 0.8. It must be
noted that not all SNPs within publicly accessible data-
bases have been validated, and care must be taken to
ensure that only validated SNPs are used.

Candidate gene studies, by their very nature, rely on
the prioritization of specific genes for investigation. The
choice of gene is most commonly determined by clear
biological plausibility, consistent with current knowledge
of the pathogenesis of the disease; however, limited knowl-
edge of the pathophysiology of preterm birth therefore
limits the choice of candidate genes. Strategies that use a
fishing approach are not ideal, although recent develop-
ments in the application of whole genome approaches
may be very useful in the context of preterm birth.
Genome-wide association studies, using tag SNPs are
now emerging as a cost-effective alternative to large-
scale candidate gene association studies. It must be
recognized that the same considerations in selecting
stringent phenotype criteria are prerequisites for such
studies. Although technology now allows a genome-
wide scan of SNPs (500,000 SNPs), current bioinfor-
matic approaches are limited in their ability to handle
data sets of this magnitude. For example, a predeter-
mined significance value of 0.05 would generate 25,000
false-positive associations if the frequency of all known
SNPs were compared in any given case and control
populations. Moreover, it is unlikely that any complex
disease results from a single SNP; rather a more plau-
sible explanation is that interactions of a number of
SNPs with environmental factors are responsible for
significant increases in disease risk.

Analysis of interactions between multiple SNPs is
complex, and tools to manage interactions among a data
set of 500,000 SNPs are imperfect. A more prudent
approach is therefore to combine the more traditional
functional approach for candidate gene selection with a
bioinformatics-based approach for SNP selection. This
will create a more manageable data set for statistical
analyses as well as provide enhanced cost-effectiveness.
Further increases in yield can be obtained by focusing
on the following: (1) SNPs that are common in the study
population (minor allele frequency greater than 10%),
bearing in mind that ethnic variation in allele frequen-
cies does exist; (2) SNPs with potential functional
consequences (functional SNPs) that are likely to alter
the expression levels (regulatory SNPs) or folding struc-
ture of the proteins (nonsynonymous SNPs); and (3)
SNPs that capture the variation across a gene and can be
used to assign a haplotype.

Independent validation of results is an important step
in accepting or rejecting a hypothesis and is particularly
important when a significant association is elicited only
after post hoc stratification of data that would otherwise
have yielded negative results. Further validation may
involve in vitro or in vivo functional studies.

Conclusion

Preterm birth is a global obstetric challenge with 13
million preterm deliveries annually worldwide.127 It is
likely that the cause of PTB and PPROM is multifacto-
rial and involves both genetic and environmental fac-
tors.14-17 Although the advent of new technologies
capable of probing the genome offer exciting possibili-
ties to gain an entirely new insight into the mechanisms
leading to PTB, it is important to understand that tech-
nology alone will not resolve the complex issue of the
genetic susceptibility to PTB. In this paper we have
given careful consideration to the PTB phenotype, study

http://blocks.fhcrc.org/&percnt;5Epauline/SIFT.html
http://fold-x.embl-heidelberg.de&percnt;3A1100/cgi-bin/main.cgi
http://fold-x.embl-heidelberg.de&percnt;3A1100/cgi-bin/main.cgi
http://www.cbs.dtu.dk/services/NetPhos/
http://www.hapmap.org/
http://www.broad.mit.edu/mpg/tagger/
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design, candidate gene selection, and the selection of
appropriate control populations required to investigate
the relationship between specific polymorphic variants
and various aspects of the preterm birth phenotype. It
is only with careful consideration of these important is-
sues that we will be able to truly integrate genetic infor-
mation into our understanding of the mechanisms
leading to PTB.
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